
Compressing Large Data Sets
with Geometry

PIs: Mathieu Desbrun (USC West)
Ronald DeVore (USC East)
Peter Schröder (Cal Tech)
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Large Data Sets with Geometry
• Digital Elevation Maps
• Medical Imagery
• Computer Aided Design
• Reverse Engineering
• Steering Large Scale Computation
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Surface: Graph of 2d- function
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Encoders/Decoders

• Server(Encoder) → Client(Decoder)

• Encoder: E : S → B(S) = {b1, b2, . . . , bn, . . .}

• Client asks for surface
• En(S) := {b1, . . . , bn}

• Decoder: Dn : B → SB

• Compressed Surface: Dn(En(S)) := SB

• if resolution is unacceptable client asks for more
bits
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Desirable Properties:
• Universal: Applies to all S

• Progressive: Receiving more bits gives improved
resolution

• Burn In: Client selects subregion; new bits only
update chosen region
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Burn-In
Coarse Approximation
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Progressive Burn-In
Selected region for refinement
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Desirable Properties:
• Universal: Applies to all S

• Progressive: Receiving more bits gives improved
resolution

• Burn In: Client selects subregion; new bits only
update chosen region

• Preserve Geometry and Topology
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Desirable Properties:
• Universal: Applies to all S

• Progressive: Receiving more bits gives improved
resolution

• Burn In: Client selects subregion; new bits only
update chosen region

• Preserve Geometry and Topology
• Optimal: performs at best bit rate?
• Image Encoder: Cohen,Dahmen,

Daubechies,DeVore
• Burn In: DeVore, Johnson, Sharpley
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How can we evaluate algorithms
• Experimental:

Encoders designed on heuristics

• Precise Mathematical Formulation

Understand rules of game; what it means to be a
winner

• Two essential ingredients

a. metric ρ to measure distortion

b. Precise definition of classes Kα to be
compressed

. – p.10
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Mathematical Formulation
• Distortion: ρ(S,DnEn(S))

• Evaluate Performance on a set K of surfaces

δ(K; Dn, En) := sup
S∈K

ρ(S,DnEn(S))

• Given bit budget n

δn(K) := inf
En,Dn

δ(K,DnEn(S))

• smallest distortion for the given bit budget
• near optimal

δ(K,DnEn(S)) ≤ Cδn(K)
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(Near) Optimal Encoding for K
• optimal

δ(K,DnEn(S)) = δn(K)

• near optimal

δ(K,DnEn(S)) ≤ Cδn(K)

• Typically: δn(K) ≈ n−s for some s > 0

• Game: Find encoder/decoder E/D: for all values
of n and all classes Kα, encoder is near optimal
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Mathematical Description of
Optimal Encoding: Kolmogorov
Entropy

• Given ε > 0

• Minimal ε cover: K ⊂ ∪Nε

i=1
B(Si, ε)

• Kolmogorov Entropy Hε(K) := log2 Nε(K)
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Covering
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Covering
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Kolmogorov Entropy
• Given ε > 0

• Minimal ε cover: K ⊂ ∪Nε

i=1
B(Si, ε)

• Kolmogorov Entropy Hε(K) := log2 Nε(K)

• δn(K) = inf{ε : Hε(K) ≤ n}
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Mathematical Description of
Optimal Encoding: Kolmogorov
Entropy

• Given ε > 0

• Minimal ε cover: K ⊂ ∪Nε

i=1
B(xi, ε)

• δn(K) = inf{ε : Hε(K) ≤ n

• Kolmogorov entropy of K gives our benchmark
• Usually not practical encoder

. – p.17



The Issues

1. The metric

2. The classes

3. Determine Entropy of Classes

4. Build near optimal Encoders/Decoders
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Possible Metrics
• L2 = Least squares not appropriate

• L∞ better
• Hausdorff better yet
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Comparison of Metric
• Offset by a lateral error of ε,

L∞ error may be huge

• Hausdorff error is as expected

L∞ metric error
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L∞ metric error Hausdorff metric error
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Possible Metrics
• L2 = Least squares not appropriate
• L∞ better
• Hausdorff better yet

• d(S, S ′) := supx∈S dist(x, S ′)

• δH(S, S ′) := d(S, S ′) + d(S ′, S)
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Other Possible Metrics
• metrics to incorporate geometry/topology

• metrics to incorporate line of sight
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Classification of Surfaces
• Classical Approach is smoothness spaces - too

isotropic

• Classify according to complexity
• Complexity of Topology
• Complexity of Geometry
• Differential Geometry to play crucial role
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Classify Surfaces
• Critical points

• ridge curves
• drainage curves
• level curves
• plateaus
• smooth regions
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Classify Surfaces
• Critical points
• ridge curves
• drainage curves
• level curves
• plateaus
• smooth regions
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Classify on basis of the complex-
ity of these curves

• each curve γ has a smoothness parameter α(γ):
measures smoothness of γ in certain Besov
spaces Bα corresponding to L∞ (or Hausdorff)

• We know how to do this by results in univariate
approximation - free knot splines; n-term
wavelets; optimal encoding

• δn(U(Bα)) ≤ Cn−α

• Smoothness β between curves: how effectively
can we approximate by interpolation

• Classify S on basis of behavior of α and β

• Not ready to formulate this
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Determine Entropy of Classes
Kα,β in Hausdorff Metric

• Albert Cohen, Wolfgang Dahmen, Ingrid
Daubechies

• δN(K) ≤ Cn−1 for K ball in C(Ω), Ω ⊂ IRd,
N = nd−1 log n

• δn(K) ≤ Cn−1 for K ball in BV(Ω), Ω ⊂ IR

• δn(K) ≤ Cn−2 for K class of continuous convex
in d = 1.

• Proofs based on box dimension

. – p.26
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box dimension
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box dimension
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Designing Near Optimal Pro-
gressive Encoders

• Extract critical points and curves capturing
geometry and topology (wire mesh)

• Prioritize these curves
• Select a few highest priority curves
• first bits for these selected curves (first wire

mesh)
• choose additional next priority curves
• predict these curves from first wire mesh:

generate smooth surface to first wire mesh
• update bits for all selected curves (second wire

mesh)
• continue
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Selecting and priortizing curves:
Morse structure and Reeb
graphs

Original terrain
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Selecting and priortizing curves:
Morse structure and Reeb
graphs

Select critical points
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Selecting and priortizing curves:
Morse structure and Reeb
graphs

Represent as graph
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Selecting and priortizing curves:
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Edge represents monotone region
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Selecting and priortizing curves:
Morse structure and Reeb
graphs

monotone region is a washer
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Selecting and priortizing curves:
Morse structure and Reeb
graphs

ground reference
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Selecting and priortizing curves:
Morse structure and Reeb
graphs

Each saddle point gives level curve
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Selecting and priortizing curves:
Morse structure and Reeb
graphs

prioritize by assigning weights
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Selecting and priortizing curves:
Morse structure and Reeb
graphs

Definition of weight
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Selecting and priortizing curves:
Morse structure and Reeb
graphs

removing low priority sections
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Add Geometry
• Morse structure captures topology

• Use curvature (shape operator) to select and
priortize geometry

• embed geometry into graph
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Encoding Curves
• multiscale methods (CAGD subdivision) using

piecewise polynomials

• interpolatory
• shape preserving: monotonicity, convexity, etc
• optimal encoder for many classes (Besov balls):

δn(Kα) ≈ n−α, Kα := U(Bα(Lτ ))

• K1 includes all curves with finite arc length
• K2 includes all convex curves
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Simplest case - piecewise linear
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Example: Level Curve Approxi-
mation
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Further Efforts
• classify surfaces

• determine Kolmogorov Entropy of these classes
• encode geometry
• Burn In
• Other Metrics
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Predicting surface from wire
mesh

• inpainting (nonlinear evolution equations)

• constrained minimization
• interpolation
• constrained Delaunay
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